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Abstract

In this paper, we study how temporary premium benefits affect user behavior on
a multi-channel social livestreaming platform. We collect novel user-level panel data
which captures viewership, chat engagement, and subscription purchases across pop-
ular creator channels on the platform. To estimate causal effects, we leverage quasi-
exogenous variation in the allocation of premium benefits together with double-robust
machine learning. The average benefit recipient increases time spent on the platform
by more than three hours during the benefit period, and is 11% more likely to use
the platform’s chat feature. These behavioral effects are persistent for three months
after the benefit period ends, and spill over to other creators on the platform. In the
short run, temporary benefits cannibalize paid subscriptions to the channel where they
apply, but generate more than offsetting increases in subscriptions to other channels.
In the long run, benefit recipients have a greater propensity to subscribe to all ob-
served channels. Subscription spillover effects are largest among heavy platform users
who engage less with the channel where benefits apply, suggesting that targeting users
outside their preferred content areas can generate cross-channel spillovers while miti-
gating cannibalization. We use our treatment effect estimates within a multi-objective
optimization framework to investigate how platforms can target promotional access to
temporary premium benefits to balance different, potentially competing, objectives.
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1 Introduction

Firms use a variety of promotional strategies to acquire, retain, and monetize consumers.

Many promotions give consumers temporary access to products or product features that are

otherwise sold at a premium. These promotions may provide information, encourage habit

formation, or build brand loyalty.

In digital and service-based markets, firms increasingly allocate temporary premium ben-

efits using automatic promotions—promotions that grant access to benefits without requiring

any action or payment by the consumer. For example, a rental car company might surprise

a customer with a free vehicle upgrade at check-in, an online retailer might upgrade a cus-

tomer’s regular shipping to overnight delivery at no charge, or a mobile game developer

might award a power-up to a user predicted to be at risk of churning. These examples are in

contrast to opt-in promotions, which require consumers to take action to receive promotional

benefits, such as by redeeming a coupon or signing up for a free trial.

Despite having similar objectives, automatic and opt-in promotions have several im-

portant differences. First, automatic promotions may be more difficult for sophisticated

consumers to predict and exploit. This may lead to a reduction in the cannibalization of

full price sales. Cannibalization may occur, for example, if a free trial is seen as a substitute

to a paid subscription, or a coupon is used by individuals that would have purchased with-

out a discount (Bawa and Shoemaker, 2004). Second, by removing the need for consumer

awareness or initiative, automatic promotions give firms more precise control over which

users experience the offer, potentially improving targeting efficiency. These differences are

consistent with broader trends in marketing toward automation and algorithmic decision-

making. At the same time, opt-in promotions are becoming more limited or unavailable in

some settings, as firms consider them less effective tools for building a long-term consumer

base (Kan, 2020; Foubert and Gijsbrechts, 2016).

Evaluating the impact of promotions has historically posed several empirical challenges.

First, with opt-in promotions, self-selection prevents firms from controlling who actually
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receives the promotional benefits. Firms can control who is exposed to the promotion, but

only consumers who go through the effort to use it receive the benefits. Moreover, the

consumers who self-select into receiving these benefits may be systematically different from

those who choose not to (Datta et al., 2015). Second, attribution problems can complicate the

analysis if promotional uptake co-occurs with factors such as new content releases, platform

updates, or other marketing activities (Goldfarb et al., 2022). For example, a consumer may

sign up for a free trial on a streaming platform in anticipation of a new season of their favorite

show. Firms can use automatic promotions, which give the firm control over who receives

promotional benefits and when, to address both self-selection and attribution problems and

more accurately learn about customer responsiveness.

Marketing managers also face the decisions of which outcomes to measure and over what

time horizons to measure them. For example, focusing exclusively on paid conversion may

overlook other valuable effects, such as changes in product usage that may build brand

loyalty, changes in social engagement that may drive network effects, or spillovers into ad-

ditional products or offerings (Datta et al., 2018; Chae et al., 2017; Pattabhiramaiah et al.,

2019). These behavioral changes all contribute to long-term consumer value but are not cap-

tured by any single metric. Moreover, evaluating the impact of a promotion over too short of

a time horizon may miss important longer-run effects (Yang et al., 2024). Navigating these

decisions is essential for accurately measuring the effects of promotions and implementing

effective marketing strategies.

Firms with multiple services face an additional challenge: promotions on one service can

affect user behavior across their entire portfolio. These cross-service spillovers may increase

engagement and purchases of other offerings, or they may cannibalize activity and revenue

from those services. Firms must understand these effects to design promotional strategies

that optimize value across all their services, not just the promoted one.

Despite these challenges, digital services are particularly well-positioned to benefit from

automatic promotions. Digital services possess large amounts of user behavioral data that
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can inform targeting, can easily implement promotions through their digital infrastructure,

and maintain a high degree of control over the user experience. Additionally, many digital

services offer a variety of product tiers and premium benefits, including ad-free content,

exclusive content, and account customization, which can also be offered as promotional

benefits.

In this paper, we study how digital platforms can effectively use automatic promotions to

allocate temporary premium benefits by answering the following research questions. What

are the causal effects of receiving temporary premium benefits on user behavior, and how

wide-ranging and persistent are these effects? How do heterogeneous responses to automatic

promotions inform targeting strategy? Which users should platforms target to achieve dif-

ferent, potentially competing, objectives?

To answer these questions, we analyze user behavior on a popular live-streaming platform

that features a variety of content across creator-specific channels. Users on the platform can

watch content, engage in chat, and purchase subscriptions to individual channels. The

platform uses an algorithm that quasi-randomly allocates some users temporary (30-day)

access to premium benefits. This allocation creates a natural experiment that we use to

identify the causal impact of temporary premium benefits, similar to a free trial, on user

behavior.

We use channel-specific audience information at the time of each algorithmic allocation to

define treated users, those who were present and received the promotion, and control users,

those who were present but did not receive the promotion. Using double-robust machine

learning (Chernozhukov et al., 2018), we model the platform’s promotion allocation algo-

rithm and a variety of short and long-term user-level behavioral outcomes. These outcomes

include watch behavior, social engagement, and subscription behaviors on both the trial

channel, where the user received premium benefits, and all other observed channels on the

platform. To understand the dynamic effects of these promotions, we measure each behavior

over a variety of time horizons, from the day in which the promotion was received to three
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months after the benefit period expired. To explain variation in the allocation model and

user-level responses, we use a broad set of behavioral covariates including prior watch behav-

ior, chat engagement, and subscription history. These variables can capture patterns that

prior literature identifies as important sources of heterogeneity, including prior experience

effects (Reza et al., 2021), habitual usage patterns (Shah et al., 2014), and variety-seeking be-

havior (McAlister and Pessemier, 1982; Kim et al., 2002). We use causal forests (Athey et al.,

2019) to characterize heterogeneity in treatment effects based on pre-treatment user behav-

iors. Finally, we incorporate user-level treatment effects into a multi-objective framework

(Rafieian et al., 2024) to measure tensions between optimizing different platform objectives

and evaluate the performance of counterfactual promotion targeting policies.

Temporary access to premium benefits results in significant and sustained changes in user

behavior. The average user increases viewership on both the trial channel and other chan-

nels, with effects starting immediately after the promotion is received and lasting throughout

the post-trial observation period. These changes in viewership translate to managerially sig-

nificant increases in platform activity. The average user watches approximately 150 minutes

of additional content per month across the platform, with the largest percentage increases

among historically lighter users. This promotion also increases the propensity and intensity

of a user’s chat behavior, both on the trial channel and other channels, suggesting deeper

platform engagement. For paid subscriptions, in the short term, promotion recipients are less

likely to purchase subscriptions to the channel on which promotional benefits were received.

However, users are more likely to purchase subscriptions to other channels on the platform

during the promotional period and in the months after temporary benefits expire. While

short-term decreases in paid subscriptions to the trial channel likely reflect cannibalization,

the strong positive spillovers result in a net positive effect on subscription revenue. Taken

together, these results highlight the importance of considering a wide range of outcomes over

an appropriate time horizon when evaluating promotional effectiveness.

We find managerially-relevant heterogeneity in the effects of temporary access to premium
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benefits across user segments. Subscription spillover effects are largest among users who

engage less with the trial channel relative to other channels, suggesting that cross-channel

promotions can be effective when targeting users outside their preferred content areas. In

contrast, retention effects are strongest among users who are less engaged with both trial and

other channels, suggesting that these promotions can be used to retain users who may be

at risk of churning. Notably, targeting the most loyal platform users yields low incremental

returns on both outcomes.

We use a multi-objective optimization framework to quantify the tradeoffs inherent in

implementing an automatic promotion targeting strategy that balances paid subscriptions

on the trial channel, paid subscriptions on other channels, and user retention on the plat-

form. We find limited overlap in the users targeted across different single-objective policies,

highlighting tensions between competing objectives. Multi-objective optimization policies

substantially outperform both the observed and random allocation policies, which perform

similarly to one another. This reveals high opportunity costs associated with maximizing

any single outcome at the expense of others.

The remainder of the paper is structured as follows. Section 2 overviews the relevant

literature. Section 3 describes the empirical context, including the automatic promotion

we study. Section 4 describes data sources and sample construction. Section 5 outlines

our empirical strategy, including the identification approach, causal framework, and esti-

mation. Section 6 presents the main results and explores heterogeneity across user types.

Section 7 discusses multi-objective optimization, addressing how platforms can balance com-

peting goals when targeting free trials. Section 8 concludes.

2 Literature

This research builds on several literatures, including how premium benefits affect paid con-

version and user behavior, the spillover effects of promotional interventions, and strategies
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for targeting promotions to achieve different outcomes.

A large body of literature explores how selective exposure to premium benefits through

free trials, freemium models, and paywalls affects user behavior. This research addresses two

related questions. First, what drives adoption of premium benefits? Bapna and Umyarov

(2015) find that peer influence increases premium conversion in a freemium service, while

Oestreicher-Singer and Zalmanson (2013) show that both social and content engagement

drive premium conversion. Yoganarasimhan et al. (2023) demonstrate that shorter free trial

duration can increase customer acquisition, retention, and profitability. Reza et al. (2021)

find that prior usage levels are important predictors of the take-up and effects of free samples

of experience goods. Second, how does access to premium benefits change user behavior?

Iyengar et al. (2022) find that retail membership programs increase purchase frequency and

basket size, while Datta et al. (2018) show that music streaming access increases consumption

quantity and diversity. Our research contributes to both streams by studying how temporary

access to premium benefits affects engagement and consumption, which in turn influences

subscription adoption. In our context, access is granted via an automatic promotion. While

most previous studies analyze opt-in promotions, one exception is von Wangenheim and

Bayón (2007), which studies the impact of unexpected service upgrades. We extend these

findings by studying a multi-service platform where users receive automatic promotions

without opting in or selecting the upgraded service.

For multi-product firms, promotional interventions can generate spillover effects that

require careful management through strategic design and targeting. Bawa and Shoemaker

(2004) show that free samples can increase sales among prior and new customers, but may

also cannibalize planned purchases. Sahni et al. (2017) examine cross-category spillovers

in retail contexts, demonstrating how promotional activities in one category affect demand

in related categories, while Pattabhiramaiah et al. (2019) show how firms with multiple

distribution channels can internalize cross-channel effects. Chae et al. (2017) show that

seeded word-of-mouth campaigns redirect attention across products, increasing target prod-
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uct discussions while decreasing competitor discussions. We contribute to this literature by

quantifying promotional spillovers in a digital platform context, showing that promotions

on less-preferred channels generate large positive spillovers to preferred channels, a finding

with direct implications for cross-channel targeting.

Prior research demonstrates the trade-offs associated with different promotional target-

ing strategies and the importance of measuring heterogeneous responses. Datta et al. (2015)

highlight trade-offs between customer acquisition and quality, finding that trial-acquired

customers often have lower lifetime value than customers from other channels. Foubert and

Gijsbrechts (2016) document the “double-edged” nature of free trials–they accelerate adop-

tion but may attract lower-quality customers. Ascarza (2018) and Lemmens and Gupta

(2020) challenge conventional targeting approaches, showing that targeting high churn-risk

customers can be suboptimal compared to targeting based on predicted treatment sensitivity.

Yoganarasimhan et al. (2023) evaluate personalized targeting policies that assign different

targeting treatments based on individual-level predictions of a single outcome of interest. We

extend this targeting literature by developing and implementing a multi-objective optimiza-

tion framework (Rafieian et al., 2024) that balances multiple firm objectives, demonstrating

substantial performance gains over single-objective and benchmark policies.

Finally, this research contributes to a growing literature on social live-streaming plat-

forms, where the variety of observable behaviors and contexts create unique environments

for studying media consumption behaviors and the effects of promotional interventions (Lin

et al., 2021; Lu et al., 2021; Förderer et al., 2023; Simonov et al., 2023; Huang and Morozov,

2025; Kim et al., 2025).
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3 Empirical Context

3.1 Twitch

We study user behavior on Twitch,1 a platform that connects content creators (referred to

as “streamers”), users (“viewers”), and advertisers. Twitch is one of the most popular social

live streaming platforms.2 The live-streaming format creates an engaging experience where

users witness events as they unfold and interact with creators and other users through chat.

Twitch, like most live-streaming platforms, helps creators monetize their channel through

ads and subscription revenue.

Each creator operates their own channel on the platform. Creator content often focuses

on video games, but includes a wide range of topics such as music, politics, and conversations

with the channel audience (“Just Chatting”). Figure 1 shows the typical user experience on

a channel.

Users can subscribe to a creator’s channel, enabling channel-specific benefits including

ad-free viewing (e.g. eliminating pre-roll ads) and special chat privileges (e.g., badges and

emojis). Users can subscribe to these benefits in one of three ways. They can self-subscribe

for a fee (paid subscription) or by linking their Amazon Prime membership (Prime subscrip-

tion). Users can also receive gift subscriptions from other users. Gifted subscriptions offer

the same benefits to the recipient as self-subscriptions. Users gift subscriptions to other users

for many reasons: to financially support creators, to strengthen a creator’s community, to

engage in a random act of kindness. Users can gift as few as one or up to one hundred

subscriptions at a time to a creator’s audience. All subscriptions last for 30 days and cost

about $4.99.3,4
1https://twitch.tv
2https://streamscharts.com/platforms
3Prices vary based on device and region.
4https://help.twitch.tv/s/article/gift-subscriptions?language=en_US
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Figure 1: Twitch User Experience

Notes: Screen capture of a typical user experience when viewing a creator’s channel.
The user can see live-streamed video content, a webcam view of the creator, a chat
panel, and information on the current stream (creator’s name, stream content tags,
time since start of stream, user subscription status, number of viewers).

3.2 Temporary Premium Benefits

When a user purchases more than one gifted subscription at a time, an algorithm deter-

mines which users receive those subscriptions. We refer to these purchases as automatically-

allocated subscriptions. Figure 2 illustrates an announcement of a user purchasing forty

automatically-allocated subscriptions that are distributed across the channel’s community.

Twitch describes the algorithm as follows (emphasis added):

We use an algorithm to help us select gift recipients starting with eligible view-
ers in chat, then followers, mods, and other factors that identify members of
a community. Our algorithm also avoids giving trolls subs. We are constantly
improving our algorithm to detect this behavior.5

This mechanism allocates an automatic promotion through which users receive premium

benefits without expending any effort to opt in. While it shares features with free trials and

gifts, this promotion differs in several ways. Like a free trial, this promotion gives recipients
5https://help.Twitch.tv/s/article/gift-subscriptions
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limited-time access to the same benefits as standard subscriptions at no cost. However,

unlike a free trial, recipients neither sign up to receive benefits nor do they provide payment

details or commit to recurring charges after the initial benefit period ends.6 Additionally,

despite the platform label “gift,” the algorithmic, impersonal nature of allocation distances

this context from conventional gift-giving dynamics.7 Throughout the paper, we therefore

refer to these algorithmically-allocated subscriptions as automatic promotions that grant

users temporary premium benefits.

We are interested in estimating the effects of temporary premium benefits on user be-

havior. While the platform’s algorithm generates quasi-random variation in allocation, we

do not observe the algorithm’s decision rules. A naïve approach might treat this context as

a true experiment with uniformly random allocation, in which case the effect of receiving

the benefits could be estimated by comparing the post-treatment behaviors of users who re-

ceived treatment to those that did not receive it. As evidenced by the quote above, allocation

correlates with user behaviors. Moreover, the algorithm may balance stated objectives, e.g.,

avoiding giving trolls the benefits, with unstated objectives, e.g., maximizing future profit.

This allocation algorithm has several implications for causal estimation. First, if we

accurately model the allocation process, the residual variation in allocation will be as good

as random. Second, if the algorithm prioritizes certain behaviors (e.g., chatting) or avoids

users with particular characteristics (e.g., users that already subscribe, or users with bot-like

behaviors), it will be important for us to measure behaviors and characteristics that are

strongly correlated with those determinants of allocation.
6Einav et al. (2025) show how passive enrollment and recurring charges can influence behavior in sub-

scription contexts via inattention and switching costs.
7It has been shown that intentionality plays an important role in how people interpret and respond to

others’ behavior (Clark, 1996). Moreover, recipients attribute less agency and intentionality to algorithmic
decisions, particularly for tasks involving human skills, such as gift-giving, leading to reduced emotional
reactions (Lee, 2018).
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Figure 2: Algorithmically-Allocated Subscription Announcement

Notes: Example of a user purchasing multiple
algorithmically-allocated subscriptions that are dis-
tributed across the channel’s community.

4 Data

In this section, we discuss the data, starting with how it is collected. We then define treat-

ment and how it informs sample construction. We discuss the measurement of behaviors that

are important for determining allocation and explaining variation in the effects of receiving

temporary premium benefits. Lastly, we motivate and define the outcomes we analyze.

4.1 Data Collection

We combine data from multiple sources to build a comprehensive view of user behavior on

the platform. Our analysis focuses on viewership and engagement with the top 100 English-

language channels. These channels cover a range of content, including gaming, e-sports,

music streaming, and chatting. We collect viewership, chat engagement, and subscription

information across the 100 streamers for a nine-month period spanning July 2022 to March

2023. Online Appendix A lists all creators, explains selection criteria, and details the data
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collection process.

We collect user-level viewing behavior for each channel, recorded at approximately five

minute intervals. These viewing records allow us to measure watch time per channel, the

frequency of viewing sessions, and the number of distinct channels watched within different

time frames. The analysis focuses on logged-in users, who comprise approximately 63% of

channel audiences and demonstrate aggregate viewing patterns that closely mirror overall

viewership (Simonov et al., 2023). We focus on logged-in users because their behaviors are

observable and they represent the potential user base for subscription purchases and benefits.

We supplement viewership data with the transcripts of channel-specific chat feeds. Chat

feeds record every message in a creator’s channel, including user, timestamp, and message

content. Chat feeds also record channel announcements, including when any user purchases

a subscription for themselves or other users.

4.2 Sample

Our unit of analysis is an eligible user in a cohort. A user is eligible if they are observed on

a channel within a six-minute window prior to an automatically-allocated subscription and

are not currently subscribed to that channel.8 A cohort is the set of all eligible users for

a given automatically-allocated subscription purchase. Eligibility is an important criterion

that restricts the sample to users who could have received temporary premium benefits. We

do not compare eligible users to ineligible users—those who watched the same channel at a

different time or who watched other channels—as these users may differ in systematic ways.

Within a cohort, eligible users are treated if they receive temporary premium benefits; all

other eligible users form a pool from which we sample control users. We include all eligible

treated users in our sample. We sample control users from the pool of eligible users at a

fixed 25:1 ratio of control users to treated users. This fixed sampling ratio ensures that each
8The five-minute frequency of data collection ensures at least one observation per channel in the six-

minute window leading up to any cohort start time. The algorithm does not award benefits to current
subscribers.
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treated user in a cohort is equally informative while maintaining a sufficient control pool to

estimate the counterfactual behaviors of each treated user. For example, if 40 eligible users

received temporary premium benefits, the sample cohort would include the 40 treated users

and a random sample of 1,000 control users. Our final estimation sample is comprised of

137,482 treated users and 3,436,355 control users across 13,114 cohorts.9

For every eligible user in our final sample, we define a set of covariates and outcomes that

are important to both the platform and creators. These covariates relate to watch time, which

is one of the most prominent platform metrics, chat, which speaks to social engagement and

community, subscription activity, which is a direct revenue-generating action, user retention,

as well as measures relating to the composition of activity on the platform, which speak to

spillovers.

4.3 Covariates

Our objective is to understand how temporary premium benefits influence multiple measures

of user engagement across different time horizons. We begin by outlining pre-treatment

behaviors that are likely to predict allocation and that may explain variation in how users

respond to temporary premium benefits.

To capture a broad scope of engagement, we distinguish between behavior on the channel

where the user received the trial of premium benefits (the trial channel) and across all

other channels (other channels). The composition of engagement may explain differences in

behavioral responses. For example, users that engage more with other channels than the trial

channel may have greater propensity for cross-channel spillovers (Wang and Goldfarb, 2017).

We define four categories of covariates that may be useful in predicting outcomes: watch,

chat, future subscription purchases, and overall platform activity. We rely on behavioral

covariates, as opposed to user demographics, because observed actions have greater predictive
9The final count of control users is 695 short of the count implied by the 25:1 treated to control ratio. In

a small number of cohorts (6), such as cohorts that occur in the beginning of a streaming session when the
audience is small, there are too few eligible users to exactly maintain this ratio.
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power (Matz and Netzer, 2017; Lemmens et al., 2025). We include multiple daily, weekly,

and monthly lags of pre-treatment behavior to capture dynamics, such as state dependence

and persistence in behavior (Keane, 1997; Seetharaman et al., 1999; Dubé et al., 2010),

prior experience on the platform (Ascarza, 2018), and preference for variety (McAlister and

Pessemier, 1982; Kim et al., 2002; Datta et al., 2018).

For every eligible user, watch behavior is defined as the number of minutes the user spends

connected to a particular channel during a specified time period. Chat behavior is defined

as the number of messages the user writes in a channel’s chat feed. Subscription behavior

is defined as whether or not the user has an active paid subscription during a specified time

period.10 Additionally, we measure several platform behaviors: session count, the number of

times a user starts watching a channel during a specified time period, and channel variety,

the number of unique channels accessed by the user.

Table 1 presents summary statistics for the full list of behavior-channel-time covariates

that we use to predict allocation and model treatment response. At the time of treatment,

most eligible users are not currently subscribed to any channel—0% on the trial channel (by

construction) and 6% across all other observed channels. A small fraction have allowed a

prior subscription to lapse in the preceding 30 days—5% on the trial channel and 9% across

all other channels. Aggregate watch activity is higher on other channels than on the trial

channel, with users watching on average 158 minutes versus 81 minutes in the 24 hours prior

to treatment. The distributions of watch and chat behaviors have large variance and are

heavily right-skewed.

4.4 Outcomes

The outcomes we define closely parallel the covariates. We continue to distinguish between

behavior on the trial and other channels in order to determine which behaviors are changed
10One-month subscriptions account for 98% of all paid-subscriptions in our sample. However, there do

exist paid subscriptions that last for two or more months. Therefore, we define a user’s subscription behavior
in a particular period based on the time period in which the subscription was active, regardless of when the
payment was made.
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by temporary premium benefits, and whether the total level of activity on the platform

increases or is redistributed. Our panel also allows us to observe whether behavioral changes

persist after the expiration of the benefit period, and whether these effects change in direction

or magnitude over time. We define multiple outcome periods, from the day in which the

premium benefits were allocated (Day 1), to the entire benefit period (Month 1), and for

each of the three months after the benefit period expires (Month 2, Month 3, Month 4).

Outcomes are defined as above and grouped into the same four categories: watch, chat,

future subscription purchases, and overall platform activity. Watch behavior is an important

metric for both individual content creators and the platform, directly affecting advertising

revenue, creator rankings, and growth metrics. Chat behavior is another important mea-

sure of engagement for both creators and the platform. Social interactions between viewers

and creators enhance the live viewing experience and can indicate engaging or high-quality

content (Godes and Mayzlin, 2004). Subscriptions after the expiration of the benefit period

help the platform measure the effectiveness of the promotion in converting non-paying users

to paid premium users. There are many other behaviors the platform may care about that

extend beyond engagement with a particular channel. We measure multiple post-treatment

platform-level outcomes: channel variety, session count, and retention (whether we observe

the user anywhere on the platform). Table 2 presents the full list of behavior-channel-time

outcomes and their means.
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Table 1: Covariate Descriptives

Day Pre Week Pre Month Pre
Behavior Channel 1 1 2 3 4 1 2

Watch
Trial 157.53 588.27 415.13 382.48 370.01 1858.14 1495.82

(195.83) (776.29) (655.73) (635.65) (634.09) (2427.72) (2432.46)

Other 81.01 536.90 522.23 509.41 507.40 2223.61 2256.10
(197.58) (910.95) (880.66) (867.80) (878.13) (3374.32) (3886.13)

Chat
Trial 1.57 5.98 4.55 4.44 4.35 20.51 17.23

(12.84) (48.78) (44.01) (48.96) (44.33) (171.11) (153.68)

Other 0.68 4.42 4.21 4.23 4.28 18.32 17.45
(9.85) (43.50) (41.72) (40.77) (41.67) (156.99) (156.50)

Subscribe
Trial 0.00† – – – – 0.05 0.09

(0.22) (0.28)

Other 0.06 – – – – 0.09 0.08
(0.23) (0.28) (0.27)

Session Count
Trial – – – – – 23.00 18.37

(25.12) (24.80)

Other – – – – – 37.31 37.30
(52.72) (57.85)

Channel Variety Platform – – – – – 6.21 5.80
(5.04) (5.22)

Notes: Each cell contains the mean of one behavior-channel-time covariate, with standard deviation in parenthe-
ses. Time periods denote time intervals defined relative to the cohort start date. D1 is a one day lead, W1 is a
one week lead, W2 is a two week lead (excluding the first week) with W3 and W4 defined similarly, M1 is the
entire duration (30 days) of the benefit period, and M2, M3, and M4 are the non-overlapping periods two, three,
and four months after the cohort start date, respectively. Trial and Other refer to behaviors on the trial channel
and all other channels, respectively.
†By construction, the sample only includes users who are not subscribed to the trial channel at baseline.
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Table 2: Outcome Descriptives

Day Post Week Post Month Post
Behavior Channel 1 1 2 3 4 1 2 3 4

Watch
Trial 178.74 640.18 439.98 389.09 366.80 1939.70 1376.47 1220.31 890.59

(208.42) (842.79) (733.39) (681.93) (666.22) (2669.60) (2403.91) (2306.33) (2001.99)

Other 81.28 556.41 537.37 529.94 510.73 2278.81 2040.04 1915.69 1450.18
(217.74) (1198.71) (1248.82) (1266.62) (1229.25) (4865.19) (4790.68) (4455.62) (3885.66)

Chat
Trial 1.58 6.39 4.90 4.20 4.05 20.76 15.99 14.85 13.65

(13.01) (53.18) (49.69) (43.59) (46.04) (179.39) (161.87) (165.75) (170.50)

Other 0.67 4.54 4.33 3.91 3.88 17.82 16.48 15.50 14.39
(9.65) (50.21) (49.34) (45.18) (44.46) (176.64) (177.65) (168.31) (159.86)

Subscribe
Trial - – – – – 0.11 0.09 0.07 0.06

(0.32) (0.28) (0.25) (0.24)

Other – – – – – 0.09 0.08 0.07 0.07
(0.28) (0.27) (0.26) (0.25)

Session Count
Trial – – – – – 22.23 16.11 14.41 10.67

(25.94) (23.15) (22.52) (20.03)

Other – – – – – 36.26 31.28 29.19 22.21
(60.67) (57.12) (55.80) (49.94)

Channel Variety Platform – – – – – 5.96 5.16 4.80 3.81
(4.86) (4.70) (4.63) (4.37)

Retention Platform – – – – – 1.00 0.92 0.88 0.74
(0.05) (0.28) (0.33) (0.44)

Notes: Each cell contains the mean of one behavior-channel-time outcome, with standard deviation in parentheses. Time periods
denote time intervals defined relative to the cohort start date. D1 is a one day lead, W1 is a one week lead, W2 is a two week lead
(excluding the first week) with W3 and W4 defined similarly, M1 is the entire duration (30 days) of the benefit period, and M2, M3,
and M4 are the non-overlapping periods two, three, and four months after the cohort start date, respectively. Trial and Other refer to
behaviors on the trial channel and all other channels, respectively.

5 Empirical Strategy

This section presents the empirical strategy for estimating the causal treatment effects of

temporary premium benefits. First, we outline the causal framework and identifying assump-

tions. Next, we describe the application of double-robust machine learning (DML) methods

for estimating both average and heterogeneous causal effects. Lastly, we discuss estimation

details.

5.1 Causal Framework

Our causal framework follows the canonical potential outcomes framework (Rubin, 1974).

Let Yij(Wi) denote the realization of outcome j should user i receive premium benefits

(Wi = 1) or not (Wi = 0). The causal effect of the benefits on user i’s behavior is given
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by Yij(1) − Yij(0), and the ATE of the benefits on user behavior is τj ≡ E[Yij(1) − Yij(0) ].

Incorporating pre-treatment user characteristics and behaviors Xi, the CATE is τj(x) ≡

E[Yij(1)− Yij(0) | Xi = x ].

Average treatment effects are identified under many potential sets of restrictions on the

relationship between Yj, W , and X, the simplest case being random assignment of W ,

together with a stable unit treatment value assumption. A weaker identifying assumption

is that of unconfoundedness: (Yj(0), Yj(1)) ⊥ W | X. That is, after controlling for observed

characteristics, the assignment process does not depend on a user’s potential outcomes.

The stable unit treatment value assumption requires that the potential outcomes for any

one user do not vary with the assignment of premium benefits to other users, i.e., there is

no interference across users. CATEs are identified under an additional “sufficient overlap”

condition, 0 < P (W = 1 | X) < 1, i.e., the probability of receiving benefits is never

deterministic conditional on observables.

5.2 Double-Robust Machine Learning

We use a double/debiased machine learning (DML) approach to estimate causal average

treatment effects. In this framework, we separately model benefit allocation and user out-

comes. The allocation model, e(x), describes the conditional probability that a user is

allocated premium benefits given a set of observed characteristics, x:

e(x) = E[Wi | Xi = x].

The conditional expected outcome for Yj is given by

mj(w, x) = E[Yij | Wi = w,Xi = x].

We use gradient-boosted trees to estimate both e(x) and mj(w, x). Although similar tech-

niques (e.g., random forests, regression forests, neural networks) could also be used to esti-
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mate these component models, we selected gradient-boosted trees for their predictive accu-

racy and flexibility in modeling nonlinear relationships.

To estimate heterogeneous treatment effects, we use the causal forest framework (Athey

et al., 2019; Athey and Imbens, 2019). This approach extends DML to deliver consistent

estimates of conditional average treatment effects.

The double-robust machine learning approach offers several important advantages. First,

like all double-robust estimators, it provides robustness against model misspecification. Sec-

ond, the component models are highly flexible. The gradient-boosted forests prioritize the

most informative variables from a high-dimensional set of candidate covariates, estimating

the functional form of the relationship between covariates, allocation, and outcomes without

parametric assumptions. Third, this flexibility reduces model misspecification bias in both

the allocation and outcome models.

While we do not observe the exact features used in the platform’s allocation algorithm,

we include a broad set of pre-treatment covariates to increase the likelihood that we account

for confounding in both the allocation and outcome models. If the platform’s allocation

algorithm targets users based on prior watch, chat, subscription, or platform behaviors, then

including these covariates helps improve the accuracy of the allocation model. At the same

time, these pre-treatment behaviors may also predict post-treatment behaviors, improving

the accuracy of the outcome model and richness of the conditional average treatment effects.11

5.3 Implementation Details

We estimate a separate outcome model for each outcome. The same allocation model is used

to calculate all double-robust average treatment effects, ensuring that differences in outcome

estimates reflect differences in behavior rather than allocation model estimation error. While
11A similar approach is used by Ellickson et al. (2023), who study the causal effects of targeted email

promotions on purchase decisions, though that analysis benefited from observing the exact set of targeting
variables used to assign treatment. In our case, we include as many potentially relevant covariates as possible,
and rely on the method to identify the relative importance of features. For a deeper discussion of applications
of double-robust machine learning methods in the marketing literature, see Lemmens et al. (2025).
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cohort timing is not necessarily random, following Athey et al. (2019), all outcomes are

demeaned at the cohort level to mitigate context-specific effects. This demeaning subsumes

creator, time, and creator-time level effects.

Average treatment effects are calculated using the overlap method outlined in Li et al.

(2018), which is preferred in cases of poor overlap (i.e., when the propensities e(x) may be

very close to 0 or 1). In our case, one reason for a region of the user covariate space to exhibit

poor overlap is if the region corresponds to behavior inconsistent with human activity (e.g.,

bots that simultaneously view many channels resulting in hundreds of viewing hours per

day).

It is important to note that staggered cohorts can lead to changes in the composition

of treated and control users over time. In other contexts, such shifts might significantly

affect the analysis (Baker et al., 2022; Borusyak et al., 2024). However, the promotion we

study is rare—fewer than 1% of users receive temporary premium benefits—making these

compositional changes minimal. As a result, we do not explicitly account for compositional

changes in cohorts over the sample period.

6 Results

In this section, we assess covariate balance, present average treatment effects, show the

robustness of our results to alternative outcome definitions and model specifications, and

analyze treatment effect heterogeneity across user segments.12

12The Online Appendix contains additional estimation details and robustness checks. Online Appendix B
presents variable importance statistics for assignment and outcome models, evaluates how accurately the
estimated allocation model captures the platform’s allocation algorithm, and demonstrates covariate balance
between treatment and control groups. Online Appendix C shows the robustness of results to alternative
outcome definitions.
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6.1 Estimated Assignment

Figure 3 shows normalized absolute mean differences in all pre-treatment covariates between

treatment and control groups before and after propensity score weighting. Before weighting,

several covariates exceed the conservative 0.1 threshold for covariate balance (Austin, 2011).

After applying propensity score weighting, all differences are well below this threshold, indi-

cating that treated and control users are balanced in terms of their observed characteristics.

These patterns provide supporting evidence for the the conditional independence assumption

required for causal identification.

Figure 3: Covariate Balance
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Notes: Normalized absolute mean differences in pre-treatment covariates between treatment and con-
trol groups with (blue circles) and without (red triangles) propensity score weighting. Time peri-
ods denote intervals relative to cohort start: D0 (baseline), D1 (one day prior), W1–W4 (weeks 1–
4 prior), M1–M2 (months 1–2 prior). Trial and Other refer to behaviors on the trial channel versus
all other channels, respectively. The dashed line at 0.1 indicates the conventional balance threshold.

6.2 Average Treatment Effects

Table 3 presents average treatment effects for watch, chat, and subscription outcomes across

trial and other channels, and over multiple time horizons. Each watch and chat effect should

be interpreted as an average change in the level of the outcome, while each subscribe outcome

effect should be interpreted as a change in the probability of purchasing a subscription.
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Table 3: Average Treatment Effects

Day Post Week Post Month Post

Outcome Channel 1 1 2 3 4 1 2 3 4

Watch
Trial 1.330 22.850 23.221 23.527 21.994 97.777 46.055 27.884 15.828

(0.496) (2.082) (1.912) (1.777) (1.752) (6.818) (6.384) (5.963) (5.298)

Other 4.865 28.728 26.545 23.906 25.903 113.390 113.970 105.219 82.484
(1.033) (6.512) (6.198) (6.180) (5.993) (25.993) (23.674) (22.326) (19.886)

Chat
Trial 1.106 3.048 1.608 1.500 1.145 7.530 1.472 1.172 1.406

(0.037) (0.116) (0.108) (0.108) (0.094) (0.342) (0.319) (0.295) (0.301)

Other 0.084 0.499 0.388 0.556 0.373 1.864 1.421 1.767 1.283
(0.021) (0.087) (0.121) (0.146) (0.097) (0.363) (0.373) (0.508) (0.425)

Subscribe
Trial -0.073 -0.018 0.059

(0.001) (0.001) (0.001)

Other 0.042 0.047 0.030 0.025
(0.001) (0.001) (0.001) (0.001)

Notes: Each cell shows the overlap-weighted ATE from a double-robust model with gradient boosted allo-
cation and outcome models. The allocation model, ê(x) is common across every cell; the outcome models,
m̂(w, x), are specific to each cell. Time periods are mutually exclusive within each grouping (Day Post,
Week Post, Month Post) but overlap across groupings. Standard errors clustered at the cohort level are
in parentheses.

Watch

Watch time on the trial channel increases by 98 minutes during the trial month, with a

23 minute increase in the week premium benefits are received. These elevated watch levels

persist throughout the month-long benefit period and continue until the third month after

the benefit period concludes. Promotion recipients also increase their viewership of other

channels by 113 minutes during the benefit period, indicating positive viewership spillovers

across the platform. These positive spillover effects persist in each of the three months after

the benefit period concludes. While the increase in watch time on the trial channel is larger

during the benefit period, the increase in watch time on other channels is larger during each

of the three months after the benefit period ends.

These results show that promotion recipients exhibit significant and sustained increases

in viewership across the platform. Taken together, the promotion has an expansionary effect

on platform watch time rather than merely shifting time from other channels to the trial

channel. The persistent increases beyond the 30-day benefit period cannot be explained

only by concurrent access to the functional benefits of a subscription. This suggests that
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temporary premium benefits influence some users’ content preferences and affinity towards

the platform.

Chat

Users who receive the promotion also show significant increases in the propensity to use the

platform’s chat feature during and after the benefit period. Average chat volume during

the benefit period increases by 7.5 messages on the trial channel and 1.9 messages across

all other channels. These increases are large as only 50% of users chat in the month prior

to treatment on any of the observed channels. While the large initial increase on the trial

channel is, in part, explained by promotion recipients writing “thanks” or “thank you” in

chat to the user who gifted the subscription, chat levels remain elevated across the trial and

other channels for the three months after the benefit period concludes. These effects suggest

that the promotion’s impact extends well beyond these initial reactions, indicating lasting

shifts in user behavior and deeper platform engagement.

Paid Subscriptions

Temporary premium benefits have large effects on subsequent subscription behavior that

vary by channel and time horizon. Benefit recipients are initially 7.3 percentage points less

likely to be subscribed to the trial channel in the month immediately following the benefit

period, but this negative effect reverses to a positive 5.9 percentage point increase by the

third month after the benefit period ends. Conversely, subscription rates for other channels

increase across all time horizons. Promotion recipients are 4.2 percentage points more likely

to be subscribed to other channels during the benefit period. Treated users are also 4.7

percentage points more likely to subscribe to other channels in the month after the benefit

period ends, with that pattern continuing for months three and four. These effects are

substantial, corresponding to a 40-62% lift during the four months after the promotion was

received. Despite the temporary reduction in propensity to subscribe to the trial channel,
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the net platform-wide effects on paid subscriptions overall, and during each of the three

post-benefit months, are positive.

The initial reduction in trial channel subscriptions may reflect several behavioral mech-

anisms. Users may engage in intertemporal substitution, delaying purchases after receiving

free access to the same benefits. Alternatively, content satiation may lead users to explore

other creator content after intensive exposure to the trial channel. Another possible explana-

tion is that receiving premium benefits delays the next opportunity to subscribe for treated

users—they cannot purchase a new subscription until the start of month two at the earliest.

In contrast, control users can purchase subscriptions throughout the benefit period. This

creates a reduction in observed treatment group subscriptions in month two. The impact

of this mechanism diminishes in months three and four as both groups have more equal

opportunity to subscribe.

Platform Outcomes

Table 4: Additional Platform Outcomes

Outcome Month 1 Month 2 Month 3 Month 4

Channel Variety 0.089 0.075 0.059 0.060
(0.010) (0.010) (0.010) (0.010)

Trial Session Count 1.416 0.670 0.461 0.288
(0.064) (0.062) (0.060) (0.058)

Other Session Count 1.650 1.775 1.481 1.056
(0.270) (0.247) (0.254) (0.233)
(0.001) (0.001) (0.001) (0.001)

Retention 0.000 0.009 0.009 0.012
(0.000) (0.001) (0.001) (0.001)

Notes: Each cell shows the overlap-weighted ATE from a double-robust
model with gradient boosted allocation and outcome models. The alloca-
tion model, ê(x) is common across every cell; the outcome models, m̂(w, x),
are specific to each cell. Standard errors clustered at the cohort level are
in parentheses.

Temporary premium benefits generate small positive and lasting changes in platform-level

engagement. Benefit recipients watch, on average, 0.1 more channels (1.5% increase), tune in
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for 1.4 additional sessions on the trial channel (6.4% increase), and tune in for 1.7 additional

sessions on the other channels (4.6% increase) The promotion increases the probability of

retention—any subsequent activity on the platform—by 0.1 percentage points in Months 2,

3 and 4. This corresponds to a decrease in churn between 5-11% in each of the three months

following the benefit period. While these effects are generally small, we expect them to be

lower bounds as we do not observe activity on every channel on the platform.

Overall, temporary premium benefits generate significant platform-wide expansionary

effects. Users who receive benefits watch more, chat more, and are more likely to be sub-

scribed in the long run to both the trial channel and other channels on the platform. These

results highlight the importance for platforms to measure and understand the comprehensive

effects of their marketing interventions, as relevant effects may not be immediately evident

and may extend beyond the immediate context of the treatment.

6.3 Robustness

We next show the robustness of our average treatment effect estimates to alternative outcome

definitions and model specifications.

In our main specification, we present the watch and chat effects in levels (minutes and

counts). However, log-transformed outcomes may be desirable in this context for several

reasons. First, heavy users can disproportionately influence the average treatment effects in

levels, whereas the log transformation reduces the impact of outliers. This point is partic-

ularly important in this context given the heavily right-skewed distribution of consumption

on the platform. Second, the platform may not equally value the same absolute increase for

light and heavy users. For example, Gentzkow et al. (2024) shows that the CPM (cost per

thousand impressions) for heavy TV viewers is lower than that of lighter viewers, reflecting

their reduced value to advertisers.

In Table 5, we show the results with log-transformed outcomes. With logged outcomes,

the effects have the same sign, are slightly larger in magnitude, and are more precisely
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Table 5: Average Treatment Effects with Logged Outcomes

Day Post Week Post Month Post

Outcome Channel 1 1 2 3 4 1 2 3 4

log(1+Watch)
Trial 0.050 0.098 0.180 0.175 0.166 0.117 0.125 0.093 0.087

(0.004) (0.004) (0.007) (0.007) (0.007) (0.004) (0.008) (0.008) (0.008)

Other 0.013 0.040 0.046 0.040 0.040 0.071 0.065 0.055 0.058
(0.006) (0.007) (0.007) (0.007) (0.007) (0.007) (0.008) (0.008) (0.008)

log(1+Chat)
Trial 0.199 0.249 0.114 0.091 0.082 0.289 0.063 0.046 0.048

(0.002) (0.003) (0.003) (0.003) (0.003) (0.004) (0.003) (0.003) (0.003)

Other 0.011 0.028 0.023 0.022 0.022 0.056 0.038 0.032 0.030
(0.001) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003)

Subscribe
Trial -0.073 -0.018 0.059

(0.001) (0.001) (0.001)

Other 0.042 0.047 0.030 0.025
(0.001) (0.001) (0.001) (0.001)

Notes: Each cell shows the overlap-weighted ATE from a double-robust model with gradient boosted allo-
cation and outcome models. The allocation model, ê(x) is common across every cell; the outcome models,
m̂(w, x), are specific to each cell. Time periods are mutually exclusive within each grouping (Day Post,
Week Post, Month Post) but overlap across groupings. Standard errors clustered at the cohort level are
in parentheses.

estimated. We find that watch time of the trial channel increases by 12.4% (exp(β̂) − 1)

during the benefit period. As before, this increase is persistent: we find a statistically

significant 9.1% increase three months after the benefit period ends.

These estimated effects should be interpreted with caution as they reflect a combination

of extensive and intensive margin changes (Chen and Roth, 2024). In our context, this is

distinction is important because the typical user does not engage in chat behavior. Therefore,

the 33.4% increase in chat behavior on the trial channel during the benefit period is at least

partially driven by changes in the extensive margin. In contrast, every eligible user in our

sample watches content on the platform. As such, the watch estimates primarily reflect

changes in the intensive margin of behavior.

Next, we show how our estimates vary by re-estimating average treatment effects with six

alternative model specifications. Instead of re-estimating all outcomes, we focus on changes

in behavior during the benefit period (Month 1 in Table 3). Specification 1 estimates each

treatment effect as a simple unweighted difference in means between treated and control

users. Specification 2 is a linear outcome model comprised of a treatment indicator and the

full set of user-level pre-treatment covariates. Specification 3 is a logit assignment model
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with the full set of user-level pre-treatment covariates. Specification 4 is a double robust re-

gression model, using the logit propensities of Specification 3 as assignment weights together

with the linear outcome model of Specification 2. Specifications 5 and 6 estimate average

treatment effects using gradient-boosted outcome-only and assignment-only models, respec-

tively. Specification 7 presents our preferred doubly-robust estimates with gradient-boosted

component models.

Table 6: Treatment Effect Estimates Across Models

Regression Models Gradient Boosted Models
(1) (2) (3) (4) (5) (6) (7)

Behavior Channel Mean ê m̂ ê, m̂ ê m̂ ê, m̂

Watch
Trial 33.126 140.718 100.386 96.655 54.186 101.343 97.777

(9.914) (9.735) (6.945) (8.772) (10.450) (12.082) (7.930)

Other 36.174 -53.107 6.509 -4.390 -71.816 29.545 113.390
(15.807) (21.187) (16.035) (20.624) (34.675) (37.003) (27.770)

Chat
Trial 14.671 11.190 7.202 5.614 4.123 5.776 7.530

(0.667) (0.824) (0.608) (1.071) (0.518) (0.537) (0.385)

Other 14.357 5.132 1.522 1.522 -0.288 2.023 1.864
(0.839) (0.728) (0.586) (0.630) (0.531) (0.497) (0.439)

Subscribe Other 0.114 0.046 0.047 0.047 0.043 0.048 0.042
(0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Notes: Standard errors in parentheses are calculated from a block bootstrap of cohorts with 200
iterations, maintaining the ratio of treated and control users within each cohort. Mean: simple
difference in means. ê: inverse propensity score weighting, with propensity scores estimated via
logistic regression or gradient boosting. m̂: outcome regression estimated via OLS or a T-learner
with separate gradient boosted models for treated and control groups. ê, m̂: doubly robust es-
timators combining both propensity score weighting and outcome regression. In each regression
model, we include both the level and quadratic term for increased flexibility.

The estimates are shown in Table 6.13 Although the effects are directionally consistent

with our preferred specification, the difference in means specification unsurprisingly yields

markedly different estimates. We do not expect this specification to return unbiased or con-

sistent estimates since treatment is not randomly allocated. Moreover, treatment is strongly

positively correlated with particular outcomes, such as chat activity and watch levels, which
13The gradient-boosted outcome-only model is implemented as a T-Learner, and does not have a closed

form solution for standard errors. For the sake of comparability, we bootstrap standard errors for all models
in Table 6, including our preferred specification. This results in small differences between the standard errors
here and those reported in Table 3.
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explains why we see attenuated effects in the robust specifications.14 The two double-robust

specifications, columns 4 and 7, return similar estimates with the exception of the Watch

Other outcome, which is not statistically distinguishable from zero in the double-robust lin-

ear regression model. Watch time on other channels, which can theoretically range from

zero to simultaneous consumption of all channels during the entire month, has the greatest

potential for extreme outliers.15 Consistent with large outliers, the logged-outcome results in

Table 5 exhibit much smaller standard errors than our main specification, which uses levels.

While the double-robust models both provide protection against model misspecification and

confounding in treatment assignment, we believe our preferred specification provides the best

estimates given its flexibility. Additionally, the gradient-boosted specification lends itself to

heterogeneity analysis.

6.4 Heterogeneous Effects

Identifying how different users respond to treatment is a necessary step in improving the

efficacy of targeted marketing efforts. Our heterogeneity analysis focuses on behavior over

the three months following the end of the benefit period. We focus on three binary outcome

variables that are relevant to platform decision-making: trial channel subscriptions, other

channel subscriptions, and user retention. Paid subscriptions to the trial channel measure the

effectiveness of promotional benefits in converting free to premium users. Paid subscriptions

to other channels capture revenue-generating spillovers. User retention speaks to long-term

preferences for engaging with content on this platform instead of alternatives. Each binary

outcome has a simple interpretation as a change in probability.

To define user segments, we focus on pre-treatment characteristics that are predictive

of and have a clear theoretical connection to the outcomes of interest. We find that watch

behavior on the trial channel and other channels in the month prior to treatment have high

variable importance for predicting subscription and retention outcomes. This is consistent
14See Online Appendix B for more details on variable importance in the assignment and outcome models.
15See Online Appendix C for further discussion of the role of outliers and additional outcome specifications.
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with prior research showing that past usage patterns are strong predictors of future customer

behavior and lifetime value (Fader et al., 2005a,b; Fader and Hardie, 2009; Lambrecht and

Misra, 2017; Ascarza, 2018).

To estimate user-level CATEs, we use causal forests (Athey and Imbens, 2019; Athey

et al., 2019) that build on our previous assignment and outcome models. After estimating the

heterogeneous effects, we use a doubly-robust linear projection of the user-level effects onto

median splits of our two pre-treatment covariates. This allows us to succinctly characterize

how treatment response varies across user segments. For ease of interpretability, we focus

this analysis along these two dimensions. In Section 7, we take a more agnostic, granular,

and data-driven approach to targeting based on the full set of observable user characteristics.

Figure 4 presents heterogeneous treatment effects for each outcome and time period,

across four user segments: light watchers (users that are below the median watch level on

the trial and other channels), trial watchers (users that are above the median on the trial

but below the median on other channels), other watchers (users that are below the median

on the trial but above the median on other channels, and heavy watchers (users that are

above the median on the trial and other channels).

Time period is the dominant factor in determining effect size and direction for subscrip-

tions to the trial channel. In the short run (Months 2 and 3), users with below-median trial

channel watch levels (light watchers and other watchers) exhibit larger (i.e., less negative)

treatment effects. In the longer run (Month 4) this pattern reverses, with heavy watchers

and trial watchers being most likely to purchase paid subscriptions to the trial channel.

The promotion has positive cross-channel effects for each of the four user segments,

increasing the probability of a paid subscription to a non-trial channel. These positive

spillovers are larger for users with watch levels above the median on other channels, and

largest for other watchers. These results suggest that a user who experiences subscription

benefits outside of their preferred context may be persuaded to pay for a subscription in a

context that more closely aligns with their preferences.
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Figure 4: Heterogeneous Treatment Effects
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Notes: This figure shows heterogeneous treatment effects and 95% confidence intervals for
subscription and retention outcomes. Users are segmented based on pre-treatment watch
time on the trial channel and across all other channels. Standard errors clustered at the co-
hort level.

In the month following the benefit period, the net effect on subscriptions is positive for

the other watchers segment. While we cannot reject zero net effect for the heavy watchers

segment, the remaining two segments have a negative net effect until Month 3. By Month

4, all segments have positive net subscription effects. We note that both the other channel

subscription and net subscription effects are likely lower bounds. First, we do not observe

all other channels on the platform. Second, the binary outcome definition does not account

for contemporaneous subscriptions to multiple channels.

Premium benefits have a positive effect on retention for each segment in each time period.
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Retention effects are largest among light watchers, who also make up the segment with the

highest baseline probability of exiting the platform. For each of the four segments, retention

effects are largest in the longer term (Month 4), when the baseline probability of churn is

higher.

These heterogeneity results reveal tensions between targeting to achieve different out-

comes. That is, the strongest long-run treatment effects for the three outcomes are for

distinct segments—trial channel subscription effects are strongest among the trial watchers;

other channel subscription effects are the strongest for the other watchers; and retention ef-

fects are strongest among the light watchers. These tensions highlight the need for platforms

to formalize the trade-offs inherent in targeting for different objectives.

7 Multi-Objective Targeting

As shown in the previous section, the effects of premium benefits vary across user segments.

Moreover, the users that are most responsive on one dimension of interest may exhibit less

favorable responses on other dimensions. In this section, we formalize these trade-offs using

a multi-objective optimization framework (Rafieian et al., 2024). We continue to focus on

three long-run outcomes—paid subscriptions to the trial channel, paid subscriptions to other

channels, and user retention—which together reflect the platform’s ability to monetize and

sustain user engagement. Using causal forest estimates, we identify Pareto efficient targeting

policies—policies where improving one outcome necessarily worsens another—and evaluate

the performance of different policies along the Pareto frontier. This framework allows us

to answer three questions: (1) How do optimal targeting policies compare to the platform’s

current targeting algorithm? (2) What are the opportunity costs of targeting to optimize

a single outcome? (3) How sensitive are Pareto-optimal policies to shifts in the platform’s

relative value of each outcome?
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7.1 Problem Definition

Let Y1, Y2, and Y3 denote the three outcomes of interest: trial channel subscriptions, other

channel subscriptions, and user retention. A targeting policy, denoted as π : X → [0, 1], is

a mapping from covariates X to the probability of assignment. We focus on deterministic

policies, where a user with covariates x is either targeted, π(x) = 1, or not targeted, π(x) =

0.16

For each outcome j, we evaluate the performance of a policy π using the average treatment

effect on the targeted (ATT): the expected conditional average treatment effect, τj(x), among

users for whom π(x) = 1:

ρj(π) = EX [τj(X) | π(X) = 1]

A policy π is Pareto optimal if no alternative policy π′ can improve at least one outcome’s

ATT without reducing another. Our goal is to identify the set of Pareto optimal policies,

which forms the Pareto frontier.

We trace out the Pareto frontier using a linear scalarization algorithm. The algo-

rithm optimizes a weighted sum of performance measures,
∑3

j=1 βjρj(π), where the weights

{β1, β2, β3} are non-negative and sum to 1. The policy that optimizes the combined objective∑3
j=1 βjρj(π) targets the set of users with the largest weighted sum of treatment effects. By

re-estimating the targeting policy for different weight vectors in the simplex, we obtain a

set of Pareto optimal policies. The union of these policies approximates the Pareto frontier,

which illustrates trade-offs between objectives and provides a view of potential outcomes in

the policy space.17

If targeting is costless and not scarce (i.e., the platform can give out as many promotions

as it wants at zero cost), the optimal policy for a given value of β, πβ(x), targets an eligible
16We use targeted and not targeted to differentiate between users who receive premium benefits under a

hypothetical policy, and continue to use treated and control to refer to users who receive premium benefits
under the platform’s algorithm.

17See Rafieian et al. (2024) for details on the properties of the Scalarization with Causal Effects Algorithm.
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user with characteristics x if the weighted sum of the user’s CATEs,
∑

j τj(x)βj, is greater

than or equal to zero. If we instead constrain the number of targeted users to Z, the optimal

policy targets the Z eligible users with the highest weighted sum of CATEs. Formally, the

corresponding optimal policy is defined as:

πβ(x) =


1 if

∑3
j=1 βjτj(x) ≥ η(Z),

0 otherwise,

where η(Z) is the Z-th largest value of
∑3

j=1 βjτj(x) across eligible users. The scalarization

algorithm can be adapted to constrain the number of targeted users at different levels. For

example, in our application the number of targeted users can be constrained to match (or be

a multiple of) the total number of treated users in the data or the number of treated users

within each cohort.

7.2 Estimation

Our search for Pareto optimal policies is based on user-level CATEs. While our causal

forests return user-level CATE estimates, and are trained using honest sampling to mitigate

overfitting, using these CATE estimates for both policy definition and evaluation introduces

bias. Specifically, targeting the Z eligible users with the highest-weighted sum of CATEs

will result in upward-biased policy performance estimates (Xu et al., 2025). This bias arises

because estimation errors in the CATEs are correlated with the selection rule: users selected

for targeting are more likely to have positive estimation errors, which results in overoptimistic

policy evaluation among the targeted users.

To address this issue, we first split the full sample by cohort into three subsamples. On the

first subsample, we estimate a causal forest model that is used in defining the optimal policy

(i.e., to determine which users are targeted). On the second, independent, subsample, we

estimate a second causal forest model that is used only for performance evaluation. We then
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apply both models to the third subsample: we use the first model’s CATE estimates to define

the targeting policy, and the second model’s CATE estimates to evaluate its performance.

This procedure decouples the selection of targeted users from evaluation, yielding more

conservative and less biased performance estimates. This three-way split is more conservative

than a standard two-way split because policy performance is evaluated using model-based

CATE estimates rather than directly observed outcomes. Thus, it ensures both the policy

selection model and the evaluation model are applied out-of-sample (Athey and Wager,

2021).

To ensure balanced targeting across cohorts and reduce the sensitivity of performance

measure estimates to outliers, we adopt a cohort-level targeting constraint: within each

cohort, we constrain the total number of targeted users to be five times the number of

observed treated users in that cohort.

We estimate the Pareto frontier by performing a grid search over β.

7.3 User-Level Heterogeneity and Example Policies

Before discussing optimal policies, we first examine the distribution of estimated CATEs and

illustrate a few example policies.

Figure 5 presents pairwise comparisons of estimated user-level CATEs, τ̂j(x), for our

three outcomes. Each distribution exhibits substantial heterogeneity. There is a negative

relationship between large trial-channel and other-channel subscription effects. We also see

that users who exhibit large retention effects tend to have modest subscription effects.

Figure 6 illustrates three example Pareto optimal policies plotted with respect one pair

of effects—trial and other subscriptions. Panel (a) illustrates a single-objective policy that

places all weight on trial channel subscriptions (β1 = 1, β2 = 0, β3 = 0). This policy identifies

users most responsive to trial channel targeting, but is agnostic to users with high other-

channel subscription effects. Note that the boundary between targeted and non-targeted

users is not perfectly delineated because of the cohort-level targeting constraint; if targeting
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Figure 5: Pairwise Comparisons of Individual-Level CATEs

(a) Sub Other vs Sub Trial (b) Retention vs Sub Trial (c) Retention vs Sub Other
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Notes: Pairwise comparisons of individual-level CATEs for subscriptions to trial channels, subscriptions
to other channels, and retention. All outcomes are measured four months post-trial. Points are a random
sample of 5,000 users (for graphical clarity).

were unconstrained, the boundary would be defined by a vertical line at a threshold level of

trial subscription effects.

Panel (b) shows a multi-objective placing equal weights on trial and other channel sub-

scriptions (β1 = 1/2, β2 = 1/2, β3 = 0). Targeted users are now concentrated in the upper-

right region of the joint distribution. The targeted set includes users with strong effects on

either subscription dimension, as well as users that have moderately strong effects on both

dimensions. Given the negative correlation between user-level CATEs within the targeted

region, 55% of users targeted in policy (a) are also targeted in policy (b).

Panel (c) attaches equal weights to all three outcomes (β1 = β2 = β3 = 1/3). In this

example, the boundary between targeted and non-targeted users appears less distinct than in

the previous two examples. This is because retention, the third outcome, is weighted in the

targeting decision but is not visualized in the two-dimensional plot. The policies depicted

in (a) and (c) target distinct user groups, with 43% of users who are targeted by policy (a)

also being targeted by policy (c).

In this empirical context, the substantial heterogeneity in user-level response to treatment

within each individual dimension creates scope for targeted policies to outperform uniform
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Figure 6: Example Policies

(a) β = (1, 0, 0) (b) β = (1/2, 1/2, 0) (c) β = (1/3, 1/3, 1/3)
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Notes: Panels display individual-level CATEs for trial channel subscriptions (x-axis) and other channel
subscriptions (y-axis), with each targeted user marked with a red x. Panel (a) shows a single-objective
policy maximizing trial channel subscriptions. Panel (b) shows a multi-objective policy weighting trial and
other channel subscriptions equally. Panel (c) shows a policy giving equal weight to all three outcomes.
Each policy targets the same total number of users (five times the observed treatment count within each
batch). Points shown are a random sample of 5,000 users (for graphical clarity). Ellipses are drawn to
contain 90% of users in each group to help distinguish targeted from not targeted users.

allocation in terms of the ATT. Moreover, the covariation in treatment responses between

outcomes—in particular, the fact that responses are not strongly positively correlated—

highlights the importance of explicitly accounting for all important outcomes in a multi-

objective targeting framework.

7.4 Policy Performance

We now quantify the performance of Pareto frontier policies and compare them to a set

of non-Pareto optimal benchmark policies. Figure 7 summarizes ATTs for policies in three

groups: single-objective policies, sample multi-objective policies, and benchmark policies

(observed and random allocation).18 Specifically, we look at the three multi objective policies

on the Pareto that achieve 80% of the optimal single objective performance for one measure,

while maximizing the combined performance of the other two measures. The results in

this section align closely with those presented earlier, but they differ in two important ways.
18In Online Appendix B, we visualize the Pareto frontier and provide the numerical estimates visualized

in Figure 7.
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First, the main results section emphasized population-level effects, reporting ATEs estimated

with overlap weighting. In this section, we instead evaluate targeting policies derived from

individual-level CATEs. Because our goal is policy evaluation rather than population-level

inference, the ATT estimates are computed directly on the holdout sample without applying

overlap weighting.

Figure 7: Policy Performance

Single−Objective Multi−Objective Data
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Notes: Bars display average treatment effects on the targeted (ATTs) for selected policies. Single-objective
policies maximize one outcome. Multi-objective policies achieve 80% of the maximum ATT for one out-
come while optimizing the sum of the other two, or give equal weight to all three. Observed reflects the
platform’s actual allocation. Random simulates uniform random assignment.

The ATTs of the observed allocation are similar to random assignment and markedly

different from any of the estimated Pareto optimal policies. This finding is consistent with

the platform’s stated objective of “identify[ing] members of a community”, and provides

further evidence that the allocation algorithm is not designed to optimize the subscription

or retention outcomes we study here.

Policies that optimize single outcomes achieve higher ATTs on their target dimensions,

but forego potential improvements on other dimensions. For example, moving from the

Equal Weights policy to a policy that maximizes subscriptions on the trial channel (Max

Sub Trial) increases trial subscriptions by 1.7 percentage points (23% increase over Equal
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Weights policy), but decreases other channel subscriptions by 1.4 points (48% decrease)

and retention by 1.6 points (58% decrease). Similarly, shifting from Equal Weights to Max

Retention increases retention by 1.1 points (38% increase), but reduces trial subscriptions

by 0.9 points (13% decrease) and other subscriptions by 0.5 points (17% decrease). These

trade-offs highlight the high opportunity cost of optimizing one objective in isolation.

In contrast, policies that balance objectives, such as Equal Weights, perform well across

all outcomes simultaneously. The Equal Weights policy achieves an ATT of 0.071 on trial

subscriptions, 0.030 on other subscriptions, and 0.028 on retention—representing 63–81% of

each single-objective’s maximum, and avoiding the foregone benefits that come from opti-

mizing a single outcome. The Pareto frontier is also relatively flat near the Equal Weights

policy: comparing the three 80% policies, improvements in outcomes are within ±1.0 per-

centage points of those from Equal Weights. Putting these targeting effects in context, a

platform-wide shift from the observed allocation to the equal weights policy would result in

213 more subscriptions and 256 additional retained users per 10,000 targeted users in the

fourth month following treatment. The total effect of the policy, which would include the

first three months after targeting and the months after month four, is likely much larger.

8 Conclusion

In this paper, we study the effects of temporary premium benefits on user behavior. Our

analysis centers on a multi-channel social live-streaming platform where users can purchase

premium subscriptions to specific creator channels. We leverage quasi-exogenous variation

in the promotional allocation of premium benefits together with a flexible double-robust es-

timation strategy to measure causal effects across multiple outcomes and time horizons. The

promotion we study not only affects future subscription purchases, but also a wide variety of

platform-relevant behaviors, including watch activity and social engagement. These effects

vary meaningfully across time and for different user segments, and spill over to other chan-
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nels on the platform. Users who receive benefits on a channel they watch less are more likely

to respond by subscribing to other channels that they watch more regularly. We quantify

the trade-offs in designing targeting policies to optimize different objectives and show that

single-outcome targeting carries high opportunity costs due to the potential for promotions

to influence a broad set of platform-relevant outcomes.

Our results have several implications for platforms and marketing managers. First, firms

benefit from taking a holistic view when evaluating marketing interventions. A narrow

focus on individual metrics or short-term outcome windows may misrepresent time-varying

treatment effects and obscure trade-offs between objectives. Second, platforms can exploit

cross-channel spillovers by targeting users outside of their preferred contexts. This result

applies specifically to firms that sell multiple products or services. Although free access to

premium benefits may cannibalize purchases in the short-term, multi-service firms can offset

these negative effects by internalizing positive spillovers across their portfolio. For example,

a single-product firm (e.g., Netflix) cannot capture cross-service spillovers from promotions

like free trials. In contrast, a multi-product firm (e.g., Disney, which offers multiple streaming

services and other entertainment products) stands to benefit when a promotion on one service

boosts purchases or engagement on another. Importantly, a multi-service firm must analyze

user data across its entire portfolio, as evaluating each service in isolation would miss effects

that determine overall profitability.

Our analysis leaves several questions for future research. We document strong cross-

channel spillovers but do not identify the mechanisms behind them. Spillovers could be

driven by many different mechanisms, including from substitution, complementarity, or qual-

ity differences across channels. Understanding which of these mechanisms play a role would

inform promotion strategies in other contexts. If spillovers are driven by substitution, plat-

forms should target adjacent content that builds interest without giving away what users

would otherwise pay for—for example, offering trial access to comedy content to users that

prefer drama content to build interest in a full subscription. If complementarity drives
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spillovers, a social media platform could use its recommendation algorithms to position ads

next to complementary content—for example, sequencing an all-wheel drive automobile ad

after outdoor-lifestyle content might enhance the appeal or attention to the ad. Distinguish-

ing between these mechanisms would require experimental manipulation of the degree of

complementarity between focal and adjacent contexts—variation our observational data do

not provide. Relatedly, while our reduced-form approach measures changes in behavior that

are suggestive of preferences, we do not identify the underlying preference structure that

maps time allocation to willingness-to-pay.

Finally, implementing optimal targeting in practice requires firms to balance experi-

mentation with exploitation. Continued experimentation provides the variation needed

to learn about preferences and treatment effects, while exploitation increases short-term

performance using current knowledge. How platforms can dynamically manage this trade-

off—particularly as user preferences and content offerings evolve—remains an important

operational challenge.
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A Data Collection

A.1 Creator Sample

Twitch has over 1 million content creators (streamers), each with their own channel; however,
many of those streamers have little to no viewers. For tractability, we focus the analysis on
the top 100 English language streamers. We used a Twitch data aggregator1 to select the
100 highest-ranked English language streamers by total viewership in the 90 days leading
up to the start of the sample (July 1, 2022), and who are also ranked in the top 150 by
watch time in the 30 days leading up to the start of the sample. The 90 day selection
criterion helps define streamers with a sustained presence on the platform, while the 30 day
criterion helps identify streamers who were currently active and popular on the platform.
Table A.1 contains the full list of 100 streamers included in our sample. While the majority
of these channels are operated by individuals, a select few (e.g. esl_csgo) are managed by
organizations. These organization-managed channels may not have many active subscribers,
but they are useful for measuring spillovers in watch and engagement.

Table A.1: Creator Channels in Sample

39daph dreamleague loltyler1 saintone
aceu elajjaz lpl shahzam
adinross esfandtv lvndmark shivfps
amouranth esl_csgo mande shroud
asmongold esl_dota2 maximilian_dood sinatraa
aydan fextralife mizkif smitegame
barbarousking foolish_gamers moistcr1tikal sodapoppin
beyondthesummit forsen moonmoon summit1g
blastpremier fuslie nickeh30 swagg
boxbox gamesdonequick nickmercs sweetdreams
brawlhalla gorgc ninja symfuhny
brucedropemoff gtawiseguy nmplol sypherpk
buddha hasanabi northernlion tarik
castro_1021 hiko otzdarva tenz
chess iitztimmy penta tfue
chilledchaos ironmouse pestily thebausffs
classybeef jinnytty pokelawls topsonous
clix k3soju pokimane trainwreckstv
coconutb kyedae prod tsm_imperialhal
cohhcarnage kyle quickybaby uberhaxornova
daltoosh lck quin69 valorant
deuceace lcs rainbow6 xqc
disguisedtoast lec ranboolive yourragegaming
distortion2 leekbeats rocketleague zealsambitions
doublelift lirik roshtein zerkaa

1https:\sullygnome.com
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A.2 Data Collection

Viewing Behavior

We collected watch data by querying the https://tmi.twitch.tv/ API endpoint. This
endpoint returned a JSON file containing the broadcaster’s name, live status, and a list
of logged-in chatters (users) watching the channel. We rotated through 100 streamers and
queried the endpoint for each streamer approximately once per five minutes from July 2022
until the endpoint was officially shut down in early April 2023.2 The approximately five-
minute frequency of collection ensures at least one observation per channel in the six-minute
window leading up to any cohort start time, which we use in our definition of eligible users.

Short data gaps occurred due to power outages and reaching device storage limits. Fig-
ure A.1 shows the distribution of successful API calls over the sample period. The maximum
height of the bars is determined by the cadence of our data collection procedure. We had
four separate computers running, each collecting 1/4 of the data. The first dip (09/2022)
affected all computers; the subsequent dips each only affected one computer. The dips re-
sulted from human/technology/utilities-related failures in our data collection infrastructure
rather than Twitch service outages that could be correlated with treatment. We therefore
have no reason to believe these short outages will affect the results in any substantive way.

Figure A.1: Viewing Behavior Collection Outages
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Notes: This figure documents the number of successful API calls per day.

2See https://discuss.dev.twitch.com/t/legacy-chatters-endpoint-shutdown-details-and-tim
eline-april-2023/43161 for the official announcement.
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Chat and Subscription Behavior

Channel-specific chat logs were collected using the Chatty application,3 which allowed for
the simultaneous monitoring of all channels in our sample. For each channel, we recorded
the complete chat transcript, including all messages sent and subscription status change
notifications. These data were collected on a different computer than the viewing behavior.

3https://chatty.github.io/
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A.3 Data Cleaning and Processing

Our estimation sample is comprised of cohorts with treatment dates ranging from September
2022 to December 2022 to ensure each cohort includes a two-month pre-treatment and four-
month post-treatment observation period for all eligible users.

We limit our analysis to cohorts with at least five treated users. The primary motivation
for this filter is computational ease, as each cohort used in the estimation requires computing
cohort-specific covariates and outcomes for a separate set of control users. Cohorts with five
or more treated users account for 80% of treated users across the entire set of algorithmically-
allocated premium benefits (i.e., cohorts of size two or more) in our data. The average number
of treated users per cohort in the final estimation sample is 10.5.

We further refine our sample to include only eligible users with at least 30 minutes and
no more than 21,600 minutes (equivalent to twelve hours per day) of watch time across all
observed channels during the month prior to treatment. This filter, which removes fewer than
2% of users, excludes users that exhibit extreme watch levels that is likely more consistent
with bot activity than human behavior.
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B Estimation

B.1 Double/De-biased Machine Learning

Tuning Parameters

Hyperparameter tuning across every assignment and outcome model would be computation-
ally intensive. We instead tune hyperparameters for three models: the assignment model,
one representative continuous outcome model (trial channel watch during the trial month),
and one representative binary outcome model (paid subscriptions to other channels during
the trial month). We use 5-fold cross-validation with cohort-level splits to sequentially tune
seven hyperparameters over a coarse grid of parameters values: number of rounds (nrounds),
maximum tree depth (max_depth), minimum child weight (min_child_weight), minimum
loss reduction (gamma), row subsampling fraction (subsample), column subsampling fraction
(colsample_bytree), learning rate (eta), and loss weight on treated units (scale_pos_weight).
The three outcomes converge on similar optimal hyperparameters, from which we choose one
set to apply across all models: nrounds = 1000, max_depth = 6, min_child_weight = 1,
gamma = 1, subsample = 0.6, colsample_bytree = 0.9, eta = 0.01, and scale_pos_weight
= 1.

Estimated Assignment

We do an out-of-sample prediction exercise to illustrate how treatment assignment proba-
bility varies with pre-treatment covariates. While our double-robust estimation approach
requires only one of the two models to be correctly specified, an accurate assignment model
increases our confidence in our identifying assumptions. We split the sample into training
cohorts (50%) and holdout cohorts (50%), estimate the assignment model on the training
sample using our tuned hyperparameters, and compare predicted probabilities to observed
treatment rates in the holdout sample.
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Figure B.2: Prediction Exercise
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Notes: Linear projection of user-level estimated assignment probability onto deciles of user-level
characteristics. Watch Decile: trial channel watch time in the last month. Chat Decile: count of
chat messages on the trial channel in the last month. Fewer than 40% of users chat, so the first
decile contains all users that do not engage in that behavior. The average assignment probability
of 1/26 in each panel reflects the 25:1 control to treatment ratio.

Figure B.2 displays how predicted and observed assignment probabilities vary with pre-
treatment watch, chat, and subscription behaviors across both trial and other channels.
The projections show several features of the assignment algorithm. First, allocation is not
uniformly random. More active users on the trial channel more frequently receive the promo-
tion, but this relationship reverses beyond a threshold; very high activity reduces assignment
probability. This inverted U-shape suggests the algorithm rewards engagement while dis-
couraging bot-like behavior, which aligns with the platform’s statement on how allocation
works. Interestingly, assignment seems to close to uniformly random with respect to watch
time on other channels. Overall, predicted and observed assignment very closely align.

Table B.2 presents pre-treatment covariate descriptives separately for the treated and
control users. There are small differences in baselines between the two groups, as shown
in balance tests reported in Figure 3. Treated users have lower pre-treatment engagement
with the trial channel across multiple metrics: their average watch time on day 1 pre-
treatment is 129.51 minutes compared to 158.65 minutes for control users, and their chat
activity is similarly lower. Treated users also show higher subscription rates to other channels
at baseline (0.12 versus 0.05) and greater engagement with the broader platform. These
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differences highlight the importance of accounting for pre-treatment covariates.

Variable Importance

Figure B.3 shows variable importance measures from the assignment model. Chat activity
on the trial channel during the first pre-treatment month (M1) is the strongest predictor of
assignment. Session counts and watch activity on the trial channel also predict assignment, as
do subscribe-related covariates. In contrast, watch time and chat activity on other channels
are not strong predictors of treatment assignment. This pattern demonstrates that user
behavior on the trial channel is a key determinant of assignment, while activity elsewhere
on the platform has less influence.

Figure B.4 shows variable importance measures for all covariates (columns) for the pri-
mary one-month post-treatment outcomes (rows). Unlike assignment, subscription activity
does not strongly predict any outcomes. Chat outcomes are predicted by multiple sets of
covariates, with chat activity on the respective channel or channel group generally being the
strongest predictor. For subscription outcomes, platform-wide session counts (a function of
watch behavior) are the strongest predictors. For watch-related outcomes, pre-treatment
watch behavior on the trial channel is the strongest predictor. Overall, each group of covari-
ates is a meaningful predictor of at least one group of outcomes or assignment.

Figure B.3: Assignment Model Variable Importance
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Notes: Variable importance measures from the assignment model across different covariate sets
(columns). Importance represents the average improvement in prediction accuracy attributable to splits
on each variable. Higher values indicate greater importance for predicting treatment effect heterogene-
ity. Time periods: D1 = day 1, W1-W4 = weeks 1-4, M1-M4 = months 1-4 (all pre-treatment).
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Figure B.4: Causal Forest Variable Importance
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Table B.2: Covariate Descriptives by Treatment

Treated Users
Day Pre Week Pre Month Pre

Behavior Channel 1 1 2 3 4 1 2

Watch
Trial 129.51 585.52 417.09 365.45 341.14 1802.34 1307.29

(159.88) (649.34) (573.48) (545.67) (542.04) (1980.52) (2007.39)

Other 81.14 560.62 549.57 531.42 526.26 2318.64 2294.00
(169.91) (879.92) (874.17) (861.43) (872.56) (3326.75) (3725.41)

Chat
Trial 2.28 9.36 6.20 5.54 5.10 27.51 18.79

(11.67) (40.98) (35.75) (40.08) (36.36) (133.93) (120.21)

Other 1.25 8.00 7.58 7.48 7.41 32.53 29.92
(11.60) (53.73) (52.72) (51.19) (52.26) (194.16) (198.54)

Subscribe
Trial 0.00† – – – – 0.02 0.05

(0.15) (0.21)

Other 0.12 – – – – 0.18 0.15
(0.33) (0.38) (0.35)

Session Count
Trial – – – – – 24.43 17.59

(20.65) (21.47)

Other – – – – – 40.33 39.35
(52.70) (57.05)

Channel Variety Platform – – – – – 6.69 6.17
(5.14) (5.35)

Control Users
Day Pre Week Pre Month Pre

Behavior Channel 1 1 2 3 4 1 2

Watch
Trial 158.65 588.38 415.05 383.16 371.17 1860.37 1503.36

(197.05) (780.94) (658.80) (638.98) (637.47) (2443.89) (2447.63)

Other 81.01 535.95 521.13 508.53 506.65 2219.81 2254.58
(198.61) (912.16) (880.90) (868.04) (878.34) (3376.16) (3892.42)

Chat
Trial 1.55 5.85 4.48 4.40 4.32 20.23 17.17

(12.88) (49.06) (44.30) (49.28) (44.62) (172.42) (154.86)

Other 0.66 4.27 4.08 4.10 4.15 17.75 16.95
(9.78) (43.03) (41.22) (40.30) (41.19) (155.29) (154.56)

Subscribe
Trial 0.00† – – – – 0.05 0.09

(0.23) (0.29)

Other 0.05 – – – – 0.08 0.08
(0.22) (0.28) (0.27)

Session Count
Trial – – – – – 22.94 18.40

(25.28) (24.92)

Other – – – – – 37.19 37.22
(52.72) (57.88)

Channel Variety Platform – – – – – 6.19 5.78
(5.03) (5.21)

Notes: Each cell contains the mean of one behavior-channel-time covariate, with standard deviation in parenthe-
ses. Time periods denote time intervals defined relative to the cohort start date. D1 is a one day lead, W1 is a
one week lead, W2 is a two week lead (excluding the first week) with W3 and W4 defined similarly, M1 is the
entire duration (30 days) of the benefit period, and M2, M3, and M4 are the non-overlapping periods two, three,
and four months after the cohort start date, respectively. Trial and Other refer to behaviors on the trial channel
and all other channels, respectively.
†By construction, the sample only includes users who are not subscribed to the trial channel at baseline.
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B.2 CATE Baselines

Figure B.5 shows the baselines for the CATEs reported in Figure 4. As expected, users that
watch more of the trial channel (trial and heavy segments) are more likely to subscribe to
the trial channel. Likewise users that watch more of the other channels (other and heavy
segments) are more likely to subscribe to an other channel. Month one trial baselines are
omitted because treated users are, by definition, subscribed. Retention rates on the platform
are high in months one and two, meaning that even small treatment effects may be indicative
of a large percentage change in the propensity to churn. By construction, all eligible users
are observed, and thus retained, on the platform in the month 1.

Figure B.5: Heterogeneous Treatment Effects by Watch Level - Baselines
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B.3 Additional Policy Frontier Figures and Tables

Figure B.6 shows the estimated Pareto frontier across the three multi-objective optimization
outcomes. The four figures (different rotations of the same frontier) show that the Pareto-
optimal policies outperform both the observed platform allocation and random assignment
across all three outcomes. Table B.3 presents the specific estimates for Figure 7.

Table B.3: Multi-Objective Policy Frontier

Policy (β1, β2, β3) ATT Pr(Sub Trial) ATT Pr(Sub Other) ATT Pr(Retention)
Max DV1 (SO) (1.00, 0.00, 0.00) 0.0875 0.0157 0.0117
Max DV2 (SO) (0.00, 1.00, 0.00) 0.0511 0.0476 0.0116
Max DV3 (SO) (0.00, 0.00, 1.00) 0.0616 0.0251 0.0384
Equal Weights (0.33, 0.33, 0.33) 0.0709 0.0301 0.0279
80% Max DV1 (0.28, 0.25, 0.47) 0.0693 0.0278 0.0332
80% Max DV2 (0.23, 0.45, 0.33) 0.0621 0.0376 0.0277
80% Max DV3 (0.33, 0.28, 0.40) 0.0716 0.0277 0.0305
Observed — 0.0571 0.0226 0.0023
Random — 0.0633 0.0259 0.0138

Notes: Average Treatment Effects on the Targeted shown in Figure 7.

57



Figure B.6: 3D Policy Frontier

Notes: Four rotations of the same 3D Pareto frontier across three outcomes: trial channel subscriptions, other-
channel subscriptions, and retention at four months. Red diamonds mark policies maximizing individual out-
comes; the green diamonds an example balanced policy (80% Sub Other); purple diamonds the observed platform
allocation and a random policy.
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C Robustness Checks
User engagement on the Twitch platform is highly right-skewed and characterized by outliers.
To reduce the influence of anomalous activity on our results, we filter out users that exhibit
activity inconsistent with human behavior and consider transformations of our outcomes.
We next show the robustness of our results to these sample and outcome definitions.

C.1 Watch Time Filter

In Table C.4, we show the robustness of the main results to alternative filtering thresholds
for removing users with extreme watch levels from the sample. Our main estimation sample
uses a threshold of 21,600 minutes (equivalent to twelve hours per day) of watch time across
all observed channels during the month prior to treatment. We consider two alternative
thresholds at 14,400 minutes (eight hours per day on average) and 28,800 minutes (sixteen
hours per day on average). In general, we find that removing additional users from the far
right tail of the watch distribution leads to an increase in the size of estimated watch and
chat treatment effects, suggesting that the 12 hour per day threshold we use is conservative.

Table C.4: Average Treatment Effects for Alternative Watch Filters

Maximum Average Daily Watch

8 hours 12 hours 16 hours

Watch
Trial 109.387 97.777 88.428

(6.738) (6.818) (6.875)

Other 144.980 113.390 81.797
(25.446) (25.993) (26.028)

Chat
Trial 7.618 7.530 7.453

(0.335) (0.342) (0.338)

Other 2.281 1.864 1.696
(0.340) (0.363) (0.374)

Subscribe Other 0.041 0.042 0.042
(0.001) (0.001) (0.001)

Notes: Estimated ATEs for Month 1 outcomes. Each
column corresponds to a different sample which is con-
structed by removing eligible users with average daily
watch time during the month prior to treatment exceed-
ing the indicated threshold (8, 12, or 16 hours per day).
The allocation model, ê(x) is common across every cell
in a given column; the outcome models, m̂(w, x), are
specific to each cell. Standard errors clustered at the co-
hort level are in parentheses.

59



C.2 Threshold Watch and Chat Outcomes

As an alternative to the level and logged watch outcomes presented in the main text, in
Table C.5 we present a sequence of binary outcomes that indicate whether a user’s watch
time exceeds a given threshold. Each treatment effect can be interpreted as a change in the
probability of watch time exceeding that threshold. On the trial channel during the benefit
period, the greatest changes occur in the 4-16 hour range, corresponding to moderate levels
of monthly viewership. There is no meaningful change in the probability of becoming a very
heavy user with 128 hours of total watch time (equivalent to greater than 4 hours of watch
time per day). On other channels, the largest changes are at smaller thresholds, between 30
minutes and 4 hours during the benefit period. Beyond the 16 hour threshold, treatment
effects are small and tend towards statistical insignificance. Together, these results suggest
that expansionary effects are driven by relatively lighter users on the platform rather than
heavy users.

Table C.5: Watch Threshold Effects
Threshold: Pr(Watch ≥ x)

Channel 30 min 1 hr 2 hrs 4 hrs 8 hrs 16 hrs 32 hrs 64 hrs 128 hrs

Trial 0.008 0.013 0.020 0.026 0.032 0.028 0.019 0.007 0.001
(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000)

Other 0.011 0.010 0.009 0.008 0.006 0.003 0.001 -0.001 -0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Notes: Estimated ATEs for binary outcome variables defined as 1 if a user’s watch level exceeds
the given threshold during the Month 1 period. Standard errors clustered at the cohort level are in
parentheses.

Table C.6 shows similar treatment effects for chat threshold outcomes. Once again, the
largest effects are for thresholds indicative of light to moderate levels of engagement. We
also see that effects are driven by a mixture of intensive and extensive margin changes in
behavior. The probability of sending at least one chat increased by 0.11 on the trial channel
and 0.03 on other channels, showing an increase in the propensity to chat. All other levels
of engagement show smaller but significant increases in chat activity by users that already
engaged in this behavior.
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Table C.6: Chat Threshold Effects
Threshold: Pr(Chat ≥ x)

Channel 1 2 4 8 16 32 64 128 256

Trial 0.114 0.091 0.073 0.058 0.044 0.032 0.020 0.012 0.006
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000)

Other 0.025 0.019 0.014 0.011 0.008 0.004 0.003 0.002 0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000)

Notes: Estimated ATEs for binary outcome variables defined as 1 if a user’s count of chat messages
exceeds the given threshold during the Month 1 period. Standard errors clustered at the cohort
level are in parentheses.
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C.3 Types of Subscriptions

As a subsidiary of Amazon, Twitch offers special benefits to Amazon Prime customers.
During the time of our data collection, users were able to subscribe for free to one channel of
their choice each month by linking their Amazon Prime account to Twitch. In the average
treatment effects presented in Section 6, we show the effect of temporary premium benefits
on paid subscriptions. In Table C.7, we show the effect of temporary premium benefits on
user propensity to subscribe using Prime benefits.

Table C.7: Paid and Prime Subscriptions
Month Post

Outcome Channel 1 2 3 4

Subscribe (Paid)
Trial -0.073 -0.018 0.059

(0.001) (0.001) (0.001)

Other 0.042 0.047 0.030 0.025
(0.001) (0.001) (0.001) (0.001)

Subscribe (Prime)
Trial -0.016 -0.002 -0.003

(0.000) (0.001) (0.001)

Other 0.042 0.035 0.029 0.027
(0.001) (0.001) (0.001) (0.001)

Notes: Each cell shows the overlap-weighted ATEs from a double-robust model
with gradient boosted allocation and outcome models. Standard errors clustered
at the cohort level are in parentheses.

Similar to the negative short-run effect of premium benefits on paid subscriptions to the
trial channel, treated users are also less likely to activate a Prime subscription on the trial
channel. The Prime subscription effects are smaller in magnitude than the paid subscription
effects on the trial channel. In contrast, treated users show an approximately equal increase
in propensity to activate a Prime subscription on a non-trial channel as they do to purchase
a subscription to a non-trial channel. These results suggest the automatic promotion we
study interacts with the opt-in Prime promotion to further encourage exploration and deeper
engagement on the platform.
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